Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Neurosci ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670803

Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8 Hz) and alpha (8-13 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and non-hippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < .05), longer burst duration during the first half of the night (p < .05), but no differences across the night in density or power (p > .05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < .05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes, and the identification of similar activity patterns in animals models that allow for further mechanistic characterization.Significance Statement Current understanding of sleep and its role cognitive processes is incomplete due to a lack of discrete electrophysiological events in human rapid eye movement (REM) sleep detectable via scalp EEG. Our work remedies this gap in knowledge by designing an open-source, computational approach to identify electrophysiological alpha and theta burst events in REM sleep. Additionally, we provide evidence that these burst events are functionally important for learning and memory. Defining burst events in human REM will contribute to the development of a comprehensive mechanistic model of how sleep as a whole, and REM specifically, facilitate cognitive processes, and provide a deeper understanding of the fundamental electrophysiological properties of REM sleep that are distinct from non-REM sleep.

2.
Sci Rep ; 14(1): 8722, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622204

Dreaming is a universal human behavior that has inspired searches for meaning across many disciplines including art, psychology, religion, and politics, yet its function remains poorly understood. Given the suggested role of sleep in emotional memory processing, we investigated whether reported overnight dreaming and dream content are associated with sleep-dependent changes in emotional memory and reactivity, and whether dreaming plays an active or passive role. Participants completed an emotional picture task before and after a full night of sleep and they recorded the presence and content of their dreams upon waking in the morning. The results replicated the emotional memory trade-off (negative images maintained at the cost of neutral memories), but only in those who reported dreaming (Dream-Recallers), and not in Non-Dream-Recallers. Results also replicated sleep-dependent reductions in emotional reactivity, but only in Dream-Recallers, not in Non-Dream-Recallers. Additionally, the more positive the dream report, the more positive the next-day emotional reactivity is compared to the night before. These findings implicate an active role for dreaming in overnight emotional memory processing and suggest a mechanistic framework whereby dreaming may enhance salient emotional experiences via the forgetting of less relevant information.


Dreams , Memory , Humans , Dreams/psychology , Emotions , Sleep
3.
Sleep ; 46(10)2023 10 11.
Article En | MEDLINE | ID: mdl-36951015

STUDY OBJECTIVES: We sought to elucidate the interaction between sleep and mood considering menstrual cycle phase (menses and non-menses portions of the cycle) in 72 healthy young women (18-33 years) with natural, regular menstrual cycles and without menstrual-associated disorders. This work fills a gap in literature of examining mood in context of sleep and menstrual cycle jointly, rather than individually. METHODS: Daily subjective measures of sleep and mood, and date of menses were remotely, digitally collected over a 2-month period. Each morning, participants rated their sleep on the previous night, and each evening participants rated the extent of positive and negative mood for that day. Objective sleep was tracked with a wearable (OURA ring) during month 2 of the study. Time-lag cross-correlation and mixed linear models were used to analyze the significance and directionality of the sleep-mood relationship, and how the interaction between menstrual cycle status and sleep impacted mood levels. RESULTS: We found that menstrual status alone did not impact mood. However, subjective sleep quality and menstrual status interacted to impact positive mood (p < .05). After a night of perceived poor sleep quality, participants reported lower positive mood during menses compared to non-menses portions of the cycle, while after a night of perceived good sleep quality participants reported equivalent levels of positive mood across the cycle. CONCLUSIONS: We suggest that the perception of good sleep quality acts as a mood equalizer, with good sleep providing a protective buffer to positive mood across the menstrual cycle.


Sleep Initiation and Maintenance Disorders , Sleep , Female , Humans , Menstruation , Menstrual Cycle , Affect , Menstruation Disturbances
4.
Proc Natl Acad Sci U S A ; 119(43): e2202394119, 2022 10 25.
Article En | MEDLINE | ID: mdl-36252023

Sleep facilitates hippocampal-dependent memories, supporting the acquisition and maintenance of internal representation of spatial relations within an environment. In humans, however, findings have been mixed regarding sleep's contribution to spatial memory and navigation, which may be due to task designs or outcome measurements. We developed the Minecraft Memory and Navigation (MMN) task for the purpose of disentangling how spatial memory accuracy and navigation change over time, and to study sleep's independent contributions to each. In the MMN task, participants learned the locations of objects through free exploration of an open field computerized environment. At test, they were teleported to random positions around the environment and required to navigate to the remembered location of each object. In study 1, we developed and validated four unique MMN environments with the goal of equating baseline learning and immediate test performance. A total of 86 participants were administered the training phases and immediate test. Participants' baseline performance was equivalent across all four environments, supporting the use of the MMN task. In study 2, 29 participants were trained, tested immediately, and again 12 h later after a period of sleep or wake. We found that the metric accuracy of object locations, i.e., spatial memory, was maintained over a night of sleep, while after wake, metric accuracy declined. In contrast, spatial navigation improved over both sleep and wake delays. Our findings support the role of sleep in retaining the precise spatial relationships within a cognitive map; however, they do not support a specific role of sleep in navigation.


Spatial Memory , Spatial Navigation , Hippocampus , Humans , Mental Recall , Sleep
...